Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dong-Qing Liu, Ya-Qing Feng,* Da-Wei Liu and Sha-Sha Zhang

School of Chemical Engineering and
Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: Idqyfy@126.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
Disorder in main residue
R factor $=0.059$
$w R$ factor $=0.210$
Data-to-parameter ratio $=12.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3-[(E)-2-Chloro-3,3,3-trifluoroprop-1-enyl]-2,2-dimethyl- N -(3-pyridyl)cyclopropanecarboxamide acetone hemisolvate

In the title compound, $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O} \cdot 0.5 \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$, the pyridine ring makes a dihedral angle of $73.0(3)^{\circ}$ with the cyclopropane ring. The amide NH group and the pyridine N atom are linked by an intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond.

Comment

3-[(E)-2-Chloro-3,3,3-trifluoroprop-1-enyl]-2,2-dimethylcyclopropanecarboxylic acid is a very important intermediate for tefluthrin, an insecticide controlling a wide range of soil insect pests in maize, sugar beet, and other crops (Punja 1981). A pyridine ring is often used as an active component in pesticide discovery (Elbert et al., 2000). The title compound, (I), contains both active parts and may show some insecticidal activity.

(I)

The dihedral angle between the pyridine and cyclopropane rings is $73.0(3)^{\circ}$. An acetone molecule is found to cocrystallize in the structure and shows twofold disorder about an inversion center. The amide NH group and the pyridine N atom are linked by an intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond. The packing can be described as a dimeric arrangement of molecules linked through $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Fig. 2 and Table 1).

Experimental

3-[(E)-2-Chloro-3,3,3-trifluoroprop-1-enyl]-2,2-dimethylcyclopropanecarboxylic acid ($0.97 \mathrm{~g}, 4 \mathrm{mmol}$) was dispersed in $\mathrm{SOCl}_{2}(15 \mathrm{ml})$ and a drop of anhydrous DMF was added. The mixture was heated under reflux for 4 h . SOCl_{2} was removed by rotary evaporatio. The crude product was dissolved in anhydrous toluene (20 ml) containing 3 -aminopyridine (0.4 g). Triethylamine (0.45 g) was added dropwise to the system, until white fumes ceased to be given off. After 12 h stirring at room temperature, the reaction mixture was treated with n-hexane (30 ml). The off-white precipitate was filtered off and purified by silica chromotography (EtOAc -hexene $=1: 8$) to give the title compound (yield: $1.02 \mathrm{~g}, 80 \%$). Recrystallization of the product from acetone and a small amount of water (50:1) over a period of 8 d at ambient temperature gave colorless single crystals of (I) suitable for X-ray analysis.

Received 22 February 2006
Accepted 3 April 2006

Figure 1
The molecular structure of (I), with 30% probability ellipsoids. H atoms are drawn as spheres of arbitrary radius. Only one component is shown for each disordered unit.

The crystal structure of (I). Only one component is shown for each disordered unit. Dashed lines indicate hydrogen bonds.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O} \cdot 0.5 \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$
$Z=8$
$M_{r}=347.76$
Monoclinic, $C 2 / c$
$D_{x}=1.345 \mathrm{Mg} \mathrm{m}^{-3}$
$a=24.274$ (5) A
$b=12.330$ (2) A
$c=11.4763$ (18) \AA
Mo $K \alpha$ radiation
$\mu=0.26 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, colorless
$\beta=90.761$ (6) ${ }^{\circ}$
$V=3434.7(10) \AA^{3}$
$0.16 \times 0.12 \times 0.10 \mathrm{~mm}$

Data collection
Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1997)
$T_{\text {min }}=0.960, T_{\text {max }}=0.975$
8546 measured reflections 3025 independent reflections
1477 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.048$
$\theta_{\text {max }}=25.0^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}_{0}}^{2}\right)+(0.1093 P)^{2}\right. \\
& +0.4922 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.004 \\
& \Delta \rho_{\max }=0.39 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.30 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{~N} 2^{\mathrm{i}}$	$0.94(3)$	$2.00(3)$	$2.939(4)$	$176(3)$

Symmetry code: (i) $x,-y, z-\frac{1}{2}$.
The amide H atom was located in a difference map and refined freely. Other H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=$ $0.93-0.98 \AA$, and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2$ $U_{\text {eq }}$ (carrier). The occupancy factors for the two disordered acetone sites are 0.5 . The three F atoms are disordered over two sites with refined occupancy factors of 0.743 (5) and 0.257 (5).

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (No. 20376059).

References

Bruker (1997). SADABS (Version 2.0), SMART (Version 5.10), SAINT (Version 5.10) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Elbert, A., Erdelen, C., Kuhnhold, J., Nauen, R., Schmidt, H. W. \& Hattori, Y. (2000). BCPC Conf. Pests Dis. 1, 21-26.

Punja, N. (1981). EP Patent No. 0031199.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

